# International Journal of Engineering Sciences & Research Technology

(A Peer Reviewed Online Journal) Impact Factor: 5.164





Chief Editor Dr. J.B. Helonde Executive Editor Mr. Somil Mayur Shah

Mail: editor@ijesrt.com



ESRT

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

# INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY GOURAVA SOMBOR INDICES V.R.Kulli

Department of Mathematics Gulbarga University, Gulbarga 585106, India

### **DOI**: 10.5281/zenodo.7505774

### ABSTRACT

In this paper, we introduce the Gourava Sombor index, the reduced Gourava Sombor index and their corresponding exponentials of a graph. Also we compute these newly defined Gourava Sombor indices and their corresponding exponentials for some important nanostructures which are appeared in nanoscience.

Keywords: Gourava Sombor index, reduced Gouravs Sombor index, nanostructures.

## Mathematics Subject Classification : 05C05, 05C12, 05C35.

#### 1. INTRODUCTION

The simple, connected graph *G* is with vertex set V(G) and edge set E(G). The number of vertices adjacent to the vertex *u* called degree of *u*, denoted by d(u). The edge *e* incident by the vertices *u* and *v* with edge uv=e. Define d(e) = d(u) + d(v) - 2. For other graph terminologies and notions, the readers are referred to books [1, 2, 3].

A chemical graph is a graph whose vertices correspond to the atom and edges to the bonds. Mathematical Chemistry is very useful in the study of Chemical Sciences. We have found many applications in Mathematical Chemistry by using graph indices, especially in QSPR/QSAR research [4].

Kulli [5] introduced the first and second Gourava indices of a graph G are

$$GO_{1}(G) = \sum_{uv \in E(G)} [d(u) + d(v) + d(u)d(v)],$$
  

$$GO_{2}(G) = \sum_{uv \in E(G)} (d(u) + d(v))d(u)d(v).$$

Recently, some Gourava indices were studied, for example, in [6, 7, 8, 9, 10].

Gutman [11] introduced the Sombor index of a graph G is

$$SO(G) = \sum_{uv \in E(G)} \sqrt{d(u)^2 + d(v)^2}.$$

Recently, some Sombor indices were studied, for example, in [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

Motivated by the definition of the Sombor index and its wide applications, we propose Gourava Sombor index of a graph as follows:

The Gourava Sombor index of a graph *G* is defined as

http://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology
[29]





ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

$$GSO(G) = \sum_{uv \in E(G)} \left[ \left( d(u) + d(v) \right)^2 + \left( d(u) d(v) \right)^2 \right]^{\frac{1}{2}}.$$

In view of the Gourava Sombor index, we propose the Gourava Sombor exponential of a graph G and it is defined as

$$GSO(G, x) = \sum_{uv \in E(G)} x^{\left[ (d(u) + d(v))^{2} + (d(u)d(v))^{2} \right]^{\frac{1}{2}}}$$

We propose the reduced Gourava Sombor index of a graph G and it is defined as

$$RGSO(G) = \sum_{uv \in E(G)} \left[ \left( d(u) - 1 + d(v) - 1 \right)^2 + \left( (d(u) - 1)(d(v) - 1) \right)^2 \right]^{\frac{1}{2}}.$$

In view of the reduced Gourava Sombor index, we introduce the reduced Gourava Sombor exponential of a graph *G* and it is defined as

$$RGSO(G, x) = \sum_{uv \in E(G)} x^{\left[ \left( d(u) - 1 + d(v) - 1 \right)^2 + \left( (d(u) - 1)(d(v) - 1) \right)^2 \right]^{\frac{1}{2}}}$$

In this paper, the Gourava Sombor and reduced Gourava Sombor indices for certain nanostructures are determined.

## 2. SOME STANDARD GRAPHS

**Theorem 1.** If  $K_{m,n}$  is a complete bipartite graph with  $1 \le m \le n$ , then

$$GSO(K_{m,n}) = mn\sqrt{(m+n)^2 + (mn)^2}.$$

**Proof:** Let  $K_{m,n}$  be a complete bipartite graph with m + n vertices and mn edges such that  $|V_1| = m$ ,  $|V_2| = n$ ,  $V(K_{m,n}) = V_1 \cup V_2$ . Every vertex of  $V_1$  is adjacent with n vertices and every vertex of  $V_2$  is adjacent with m vertices.

$$GSO(K_{m,n}) = mn\sqrt{(m+n)^2 + (mn)^2}.$$

**Corollary 1.1.** Let  $K_{n,n}$  be a complete bipartite graph with  $n \ge 2$  vertices. Then

$$GSO(K_{n,n}) = n^3 \sqrt{4 + n^2}.$$

**Corollary 1.2.** Let  $K_{1,n}$  be a star with  $n \ge 2$  vertices. Then

$$GSO(K_{1,n}) = n\sqrt{(1+n)^2 + n^2}$$

**Theorem 2.** If *G* is an *r*-regular graph with  $n \ge 2$  vertices, then

$$GSO(G) = \frac{nr^2}{2}\sqrt{4+r^2}.$$

**Proof:** Let *G* be an r-regular graph with *n* vertices and  $\frac{nr}{2}$  edges. Then the degree of each vertex of *G* 

is *r*.

$$GSO(G) = \frac{nr}{2}\sqrt{(r+r)^{2} + (r^{2})^{2}} = \frac{nr^{2}}{2}\sqrt{4+r^{2}}$$

**Corollary 1.** If  $C_n$  is a cycle with  $n \ge 3$  vertices, then

 $GSO(C_n) = 4\sqrt{2}n.$ 

**Corollary 2.** If  $K_n$  is a complete graph with  $n \ge 2$  vertices, then

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[30]





 $GSO(K_n) = \frac{1}{2}n(n-1)^2\sqrt{(n^2-2n+5)}.$ 

**Theorem 3.** Let  $P_n$  be a path with  $n \ge 3$  vertices. Then  $G_4$ 

 $GSO(P_n) = 4\sqrt{2}n + 2\sqrt{13} - 12\sqrt{2}.$ 

**Proof:** Let  $P_n$  be a path with  $n \ge 3$  vertices. We obtain two partitions of the edge set of  $P_n$  as follows:  $E_3 = \{uv \in E(P_n) \mid d_G(u)=1, d_G(v)=2\}, \mid E_3 \mid = 2.$ 

 $E_4 = \{uv \in E(P_n) \mid d_G(u) = d_G(v) = 2\}, |E_4| = n - 3.$ 

To compute 
$$NGO(P_n)$$
, we see that

$$GSO(P_n) = \sqrt{(1+2)^2 + (1\times2)^2 2} + \sqrt{(2+2)^2 + (2\times2)^2 (n-3)}$$
  
=  $4\sqrt{2}n + 2\sqrt{13} - 12\sqrt{2}$ .

# 3. POLY ETHYLENE AMIDE AMINE DENDRIMER PETAA

The chemical graphs  $G_1$  of poly ethylene amide amine dendrimers *PETAA* structure have  $44 \times 2^n - 18$  vertices and  $44 \times 2^n - 19$  edges are shown in Figure 1.



Figure 1. The molecular graph of PETAA

In the above structure, we obtain that  $\{d(u), d(v): uv \in E(G_1)\}$  has four edge set partitions.

| $d(u), d(v) \setminus uv \in E(G_1)$ | (1, 2)         | (1, 3)               | (2, 2)                | (2, 3)              |
|--------------------------------------|----------------|----------------------|-----------------------|---------------------|
| Number of edges                      | $4 \times 2^n$ | $4 \times 2^{n} - 2$ | $16 \times 2^{n} - 8$ | $20 \times 2^n - 9$ |

Table 1. Edge set partition of PETAA

We calculate the Gourava Sombor index of PETAA chemical graph as follows:

**Theorem 1.** Let  $G_1$  be the chemical structure of *PETAA*. Then

$$GSO(G_1) = \left(4\sqrt{13} + 20 + 64\sqrt{2} + 20\sqrt{61}\right)2^n - 10 - 32\sqrt{2} - 9\sqrt{61}.$$

**Proof:** Applying definition and edge set partition of *G*, we conclude

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[31]





1

$$GSO(G_{1}) = \sum_{uv \in E(G_{1})} \left[ \left( d(u) + d(v) \right)^{2} + \left( d(u)d(v) \right)^{2} \right]^{\frac{1}{2}}.$$
  
$$= 4 \times 2^{n} \left[ \left( 1 + 2 \right)^{2} + \left( 1 \times 2 \right)^{2} \right]^{\frac{1}{2}} + \left( 4 \times 2^{n} - 2 \right) \left[ \left( 1 + 3 \right)^{2} + \left( 1 \times 3 \right)^{2} \right]^{\frac{1}{2}}$$
  
$$+ \left( 16 \times 2^{n} - 8 \right) \left[ \left( 2 + 2 \right)^{2} + \left( 2 \times 2 \right)^{2} \right]^{\frac{1}{2}} + \left( 20 \times 2^{n} - 9 \right) \left[ \left( 2 + 3 \right)^{2} + \left( 2 \times 3 \right)^{2} \right]^{\frac{1}{2}}.$$

By simplifying the above equation, we obtain the necessary result.

We calculate the reduced Gourava Sombor index of PETAA chemical graph as follows:

**Theorem 2.** Let  $G_1$  be the chemical structure of *PETAA*. Then  $RGSO(G_1) = (12 + 16\sqrt{5} + 20\sqrt{13})2^n - 4 - 8\sqrt{5} - 9\sqrt{13}.$ 

**Proof:** Applying definition and edge set partition of  $G_1$ , we conclude

$$RGSO(G_{1}) = \sum_{uv \in E(G_{1})} \left[ \left( d(u) - 1 + d(v) - 1 \right)^{2} + \left( (d(u) - 1)(d(v) - 1) \right)^{2} \right]^{\frac{1}{2}} \\ = 4 \times 2^{n} \left[ \left( 0 + 1 \right)^{2} + \left( 0 \times 1 \right)^{2} \right]^{\frac{1}{2}} + \left( 4 \times 2^{n} - 2 \right) \left[ \left( 0 + 2 \right)^{2} + \left( 0 \times 2 \right)^{2} \right]^{\frac{1}{2}} \\ + \left( 16 \times 2^{n} - 8 \right) \left[ \left( 1 + 1 \right)^{2} + \left( 1 \times 1 \right)^{2} \right]^{\frac{1}{2}} + \left( 20 \times 2^{n} - 9 \right) \left[ \left( 1 + 2 \right)^{2} + \left( 1 \times 2 \right)^{2} \right]^{\frac{1}{2}}$$

By solving the above equation, we get the desired result.

By using definitions and Table 1, we obtain the Gourava Sombor and reduced Gourava Sombor exponentials of *PETAA* chemical graph as follows:

**Theorem 3.** The Gourava Sombor exponential of *PETAA* is given by

$$GSO(G_1, x) = (4 \times 2^n) x^{\sqrt{13}} + (4 \times 2^n - 2) x^5 + (16 \times 2^n - 8) x^{4\sqrt{2}} + (20 \times 2^n - 9) x^{\sqrt{61}}.$$

Theorem 4. The reduced Gourava Sombor index of PETAA is given by

$$RGSO(G_1, x) = (4 \times 2^n)x^1 + (4 \times 2^n - 2)x^2 + (16 \times 2^n - 8)x^{\sqrt{5}} + (20 \times 2^n - 9)x^{\sqrt{13}}$$

# 4. PROPYL ETHER IMINE DENDRIMER PETIM

The chemical graphs  $G_2$  of propyl ether imine dendrimers *PETIM* structure have  $24 \times 2^n - 23$  vertices and  $24 \times 2^n - 24$  edges are shown in Figure 2.

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[32]





ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7



Figure 2. The molecular graph of *PETIM* 

In the above structure, we obtain that  $\{d(u), d(v): uv \in E(G_2)\}$  has three edge set partitions.

| $d(u), d(v) \setminus uv \in E(G_2)$ | (1, 2)         | (2, 2)                 | (2, 3)             |
|--------------------------------------|----------------|------------------------|--------------------|
| Number of edges                      | $2 \times 2^n$ | $16 \times 2^{n} - 18$ | $6 \times 2^n - 6$ |

Table 2. Edge partition of PETIM

We calculate the Gourava Sombor index of *PETIM* chemical graph as follows:

**Theorem 5.** Let  $G_2$  be the chemical structure of *PETIM*. Then

$$GSO(G_2) = \left(2\sqrt{13} + 64\sqrt{2} + 6\sqrt{61}\right)2^n - 72\sqrt{2} - 6\sqrt{61}.$$

**Proof:** Applying definition and edge set partition of  $G_2$ , we conclude

$$GSO(G_{2}) = \sum_{uv \in E(G_{2})} \left[ \left( d(u) + d(v) \right)^{2} + \left( d(u) d(v) \right)^{2} \right]^{\frac{1}{2}}.$$
  
= 2 × 2<sup>n</sup>  $\left[ \left( 1 + 2 \right)^{2} + \left( 1 \times 2 \right)^{2} \right]^{\frac{1}{2}} + \left( 16 \times 2^{n} - 18 \right) \left[ \left( 2 + 2 \right)^{2} + \left( 2 \times 2 \right)^{2} \right]^{\frac{1}{2}}.$   
+  $\left( 6 \times 2^{n} - 6 \right) \left[ \left( 2 + 3 \right)^{2} + \left( 2 \times 3 \right)^{2} \right]^{\frac{1}{2}}.$ 

By simplifying the above equation, we get the necessary result.

We calculate the reduced Gourava Sombor index of *PETIM* chemical graph as follows:

**Theorem 6.** Let  $G_2$  be the chemical structure of *PETIM*. Then

$$RGSO(G_2) = (2 + 16\sqrt{5} + 6\sqrt{13})2^n - 18\sqrt{5} - 6\sqrt{13}.$$

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[33]





ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

**Proof:** Applying definition and edge set partition of  $G_2$ , we conclude

$$RGSO(G_{2}) = \sum_{uv \in E(G_{2})} \left[ \left( d(u) - 1 + d(v) - 1 \right)^{2} + \left( (d(u) - 1)(d(v) - 1) \right)^{2} \right]^{\frac{1}{2}}.$$
  
$$= 2 \times 2^{n} \left[ \left( 0 + 1 \right)^{2} + \left( 0 \times 1 \right)^{2} \right]^{\frac{1}{2}} + \left( 16 \times 2^{n} - 18 \right) \left[ \left( 1 + 1 \right)^{2} + \left( 1 \times 1 \right)^{2} \right]^{\frac{1}{2}}$$
  
$$+ \left( 6 \times 2^{n} - 6 \right) \left[ \left( 1 + 2 \right)^{2} + \left( 1 \times 2 \right)^{2} \right]^{\frac{1}{2}}$$

By solving the above equation, we get the desired result.

By using definitions and Table 2, we estalish the Gourava Sombor and reduced Gourava Sombor exponentials of *PETIM* chemical graph as follows:

Theorem 7. The Gourava Sombor exponential of *PETIM* is given by

$$GSO(G_2, x) = (2 \times 2^n) x^{\sqrt{13}} + (16 \times 2^n - 18) x^{4\sqrt{2}} + (6 \times 2^n - 6) x^{\sqrt{61}}.$$

Theorem 8. The reduced Gourava Sombor exponential of *PETIM* is given by

 $RGSO(G_2, x) = (2 \times 2^n) x^1 + (16 \times 2^n - 18) x^{\sqrt{5}} + (6 \times 2^n - 6) x^{\sqrt{13}}.$ 

# 5. ZINC PROPHYRIN DENDRIMER DPZ<sub>n</sub>

The chemical graphs  $G_3$  of zinc prophyrin dendrimers  $DPZ_n$  structure have  $56 \times 2^n - 7$  vertices and  $64 \times 2^n - 4$  edges are shown in Figure 3.



Figure 3. The molecular graph of  $DPZ_n$ 

In the above structure, we obtain that  $\{d(u), d(v): uv \in E(G_3)\}$  has four edge set partitions.

|--|

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[34]

IJESRT is licensed under a Creative Commons Attribution 4.0 International License.



|                                |                       |                        |                       | ISSN: 2277-9655      |
|--------------------------------|-----------------------|------------------------|-----------------------|----------------------|
| [Raoul et al., 11(11): Novembe | Impact Factor: 5.164  |                        |                       |                      |
| ICTM Value: 3.00               |                       |                        |                       | <b>CODEN: IJESS7</b> |
| Number of edges                | $16 \times 2^{n} - 4$ | $40 \times 2^{n} - 16$ | $8 \times 2^{n} + 12$ | 4                    |

Table 3. Edge set partition of  $DPZ_n$ 

We calculate the Gourava Sombor index of *DPZ*<sup>*n*</sup> chemical graph as follows:

**Theorem 9.** Let  $G_3$  be the chemical structure of  $DPZ_n$ . Then

$$GSO(G_3) = \left(64\sqrt{2} + 40\sqrt{61} + 24\sqrt{13}\right)2^n - 16\sqrt{2} - 16\sqrt{61} + 36\sqrt{13} + 4\sqrt{193}.$$

**Proof:** Applying definition and edge set partition of  $G_3$ , we conclude

$$GSO(G_3) = \sum_{uv \in E(G_3)} \left[ \left( d(u) + d(v) \right)^2 + \left( d(u)d(v) \right)^2 \right]^{\frac{1}{2}}.$$
  
=  $\left( 16 \times 2^n - 4 \right) \left[ \left( 2 + 2 \right)^2 + \left( 2 \times 2 \right)^2 \right]^{\frac{1}{2}} + \left( 40 \times 2^n - 16 \right) \left[ \left( 2 + 3 \right)^2 + \left( 2 \times 3 \right)^2 \right]^{\frac{1}{2}}$   
+  $\left( 8 \times 2^n + 12 \right) \left[ \left( 3 + 3 \right)^2 + \left( 3 \times 3 \right)^2 \right]^{\frac{1}{2}} + 4 \left[ \left( 3 + 4 \right)^2 + \left( 3 \times 4 \right)^2 \right]^{\frac{1}{2}}.$ 

By solving the above equation, we obtain the desired result.

We calculate the reduced Gourava Sombor index of  $DPZ_n$  chemical graph as follows:

**Theorem 10.** Let  $G_3$  be the chemical structure of DPZ<sub>n</sub>. Then

 $RGSO(G_3) = (16\sqrt{5} + 40\sqrt{13} + 32\sqrt{2})2^n - 4\sqrt{5} - 16\sqrt{13} + 48\sqrt{2} + 4\sqrt{61}.$ 

**Proof:** Applying definition and edge set partition of  $G_3$ , we conclude

$$RGSO(G_3) = \sum_{uv \in E(G_3)} \left[ \left( d(u) - 1 + d(v) - 1 \right)^2 + \left( (d(u) - 1)(d(v) - 1) \right)^2 \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$$
$$= \left( 16 \times 2^n - 4 \right) \left[ \left( 1 + 1 \right)^2 + \left( 1 \times 1 \right)^2 \right]^{\frac{1}{2}} + \left( 40 \times 2^n - 16 \right) \left[ \left( 1 + 2 \right)^2 + \left( 1 \times 2 \right)^2 \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}$$
$$+ \left( 8 \times 2^n + 12 \right) \left[ \left( 2 + 2 \right)^2 + \left( 2 \times 2 \right)^2 \right]^{\frac{1}{2}} + 4 \left[ \left( 2 + 3 \right)^2 + \left( 2 \times 3 \right)^2 \right]^{\frac{1}{2}} \right]^{\frac{1}{2}}.$$

By simplifying the above equation, we obtain the necessary result.

By using definitions and Table 3, we estalish the Gourava Sombor and reduced Gourava Sombor exponentials of  $DPZ_n$  chemical graph as follows:

**Theorem 11.** The Gourava Sombor exponential of  $DPZ_n$  is given by

$$GSO(G_3, x) = (16 \times 2^n - 4)x^{4\sqrt{2}} + (40 \times 2^n - 16)x^{\sqrt{61}} + (8 \times 2^n + 12)x^{3\sqrt{13}} + 4x^{\sqrt{193}}.$$

**Theorem 12.** The reduced Gourava Sombor exponential of  $DPZ_n$  is given by

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[35]



1



 ISSN: 2277-9655

 [Raoul et al., 11(11): November, 2022]
 Impact Factor: 5.164

 IC<sup>TM</sup> Value: 3.00
 CODEN: IJESS7

 RGSO(G<sub>3</sub>, x) =  $(16 \times 2^n - 4)x^{\sqrt{5}} + (40 \times 2^n - 16)x^{\sqrt{13}} + (8 \times 2^n + 12)x^{4\sqrt{2}} + 4x^{\sqrt{61}}.$ 

# 6. PORPHYRIN DENDRIMER D<sub>n</sub>P<sub>n</sub>

The chemical graphs  $G_4$  of porphyrin dendrimers  $D_n P_n$  structure have 96n - 10 vertices and 105n - 11 edges are shown in Figure 4.



Figure 4. The molecular graph of  $D_n P_n$ 

In the above structure, we obtain that  $\{d(u), d(v): uv \in E(G_4)\}$  has six edge set partitions.

| $d(u), d(v) \setminus uv \in E(G_4)$ | (1, 3) | (1, 4)      | (2, 2)  | (2, 3)  | (3, 3)      | (3, 4)     |
|--------------------------------------|--------|-------------|---------|---------|-------------|------------|
| Number of edges                      | 2n     | 24 <i>n</i> | 10n - 5 | 48n - 6 | 13 <i>n</i> | 8 <i>n</i> |

Table 4. Edge set partition of  $D_n P_n$ 

We calculate the Gourava Sombor index of  $D_n P_n$  chemical graph as follows:

**Theorem 13.** Let  $G_4$  be the chemical structure of  $D_n P_n$ . Then

$$GSO(G_4) = (10 + 24\sqrt{41} + 40\sqrt{2} + 48\sqrt{61} + 39\sqrt{13} + 8\sqrt{193})n - 20\sqrt{2} - 6\sqrt{61}.$$

**Proof:** Applying definition and edge set partition of  $G_4$ , we conclude

$$GSO(G_4) = \sum_{uv \in E(G_4)} \left[ \left( d(u) + d(v) \right)^2 + \left( d(u) d(v) \right)^2 \right]^{\frac{1}{2}}.$$
  
=  $2n \left[ \left( 1+3 \right)^2 + \left( 1\times3 \right)^2 \right]^{\frac{1}{2}} + 24n \left[ \left( 1+4 \right)^2 + \left( 1\times4 \right)^2 \right]^{\frac{1}{2}}$   
+  $\left( 10n-5 \right) \left[ \left( 2+2 \right)^2 + \left( 2\times2 \right)^2 \right]^{\frac{1}{2}} + \left( 48n-6 \right) \left[ \left( 2+3 \right)^2 + \left( 2\times3 \right)^2 \right]^{\frac{1}{2}}$   
+  $13n \left[ \left( 3+3 \right)^2 + \left( 3\times3 \right)^2 \right]^{\frac{1}{2}} + 8n \left[ \left( 3+4 \right)^2 + \left( 3\times4 \right)^2 \right]^{\frac{1}{2}}.$ 

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[36]



IJESRT is licensed under a Creative Commons Attribution 4.0 International License.



 ISSN: 2277-9655

 [Raoul et al., 11(11): November, 2022]

 ICTM Value: 3.00

 By solving the above equation, we obtain the desired result.

We calculate the reduced Gourava Sombor index of  $D_n P_n$  chemical graph as follows:

1

**Theorem 14.** Let  $G_4$  be the chemical structure of  $D_n P_n$ . Then

$$RGSO(G_4) = (76 + 10\sqrt{5} + 48\sqrt{13} + 52\sqrt{2} + 18\sqrt{41})n - 5\sqrt{5} - 6\sqrt{13}.$$

**Proof:** Applying definition and edge set partition of  $G_4$ , we conclude

$$RGSO(G_{4}) = \sum_{uv \in E(G_{4})} \left[ \left( d(u) - 1 + d(v) - 1 \right)^{2} + \left( (d(u) - 1)(d(v) - 1) \right)^{2} \right]^{\frac{1}{2}}$$
  
$$= 2n \left[ \left( 0 + 2 \right)^{2} + \left( 0 \times 2 \right)^{2} \right]^{\frac{1}{2}} + 24n \left[ \left( 0 + 3 \right)^{2} + \left( 0 \times 3 \right)^{2} \right]^{\frac{1}{2}}$$
  
$$+ \left( 10n - 5 \right) \left[ \left( 1 + 1 \right)^{2} + \left( 1 \times 1 \right)^{2} \right]^{\frac{1}{2}} + \left( 48n - 6 \right) \left[ \left( 1 + 2 \right)^{2} + \left( 1 \times 2 \right)^{2} \right]^{\frac{1}{2}}$$
  
$$+ 13n \left[ \left( 2 + 2 \right)^{2} + \left( 2 \times 2 \right)^{2} \right]^{\frac{1}{2}} + 8n \left[ \left( 2 + 3 \right)^{2} + \left( 2 \times 3 \right)^{2} \right]^{\frac{1}{2}}.$$

By simplifying the above equation, we obtain the necessary result.

By using definitions and Table 4, we get the Gourava Sombor and reduced Gourava Sombor exponentials of  $D_n P_n$  chemical graph as follows:

**Theorem 15.** The Gourava Sombor exponential of  $D_n P_n$  is given by

$$GSO(G_4, x) = 2nx^5 + 24nx^{\sqrt{41}} + (10n - 5)x^{4\sqrt{2}} + (48n - 6)x^{\sqrt{61}} + 13nx^{3\sqrt{13}} + 8nx^{\sqrt{193}}.$$

**Theorem 16.** The reduced Gourava Sombor exponential of  $D_n P_n$  is given by

$$RGSO(G_4, x) = 2nx^2 + 24nx^3 + (10n - 5)x^{\sqrt{5}} + (48n - 6)x^{\sqrt{13}} + 13nx^{4\sqrt{2}} + 8nx^{\sqrt{41}}.$$

# 7. CONCLUSION

In this study, we have determined the Gourava Sombor index, the reduced Gourava Sombor index and their corresponding exponentials for some important dendrimers such as poly ethylene amide amine dendrimers, propyl ether imine dendrimers, zinc prophyrin dendrimers and porphyrin dendrimers which are appeared in nanoscience.

# REFERENCES

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- 2. F.Harary, Graph Theory, Reading, Addison Wesley, (1969).
- 3. S.Wagner and H.Wang, *Introduction Chemical Graph Theory*, Boca Raton, CRC Press, (2018).
- 4. M.V.Diudea (ed.) QSPR/QSAR Studies by Molecular Descriptors, NOVA New York, (2001).

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[37]



ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

## [Raoul *et al.*, 11(11): November, 2022] IC<sup>TM</sup> Value: 3.00

- 5. V.R.Kulli, The Gourava indices and coindices of graphs, *Annals of Pure and Applied Mathematics*, 14(1) (2017).
- 6. M.Aruvi, J.M.Joseph and E.Ramganesh, The second Gourava index of some graph products, *Advances in Mathematics: Scientific Journal*, 9(12) (2020) 10241-10249.
- 7. B.Basavagoud and S.Policepatil, Chemical applicability of Gourava and hyper Gourava indices, *Nanosystems:Physics, Chemistry, Mathematics*, 12(2) (2021) 142-150.
- 8. V.R.Kulli, Leap Gourava indices of certain windmill graphs, *International Journal of Mathematical Archive*, 10(11) (2019) 7-14.
- 9. V.R.Kulli, G.N.Adithya and N.D.Soner, Gourava indices of certain windmill graphs, *International Journal of Mathematics Trends and Technology*, 68(9) (2022) 51-59.
- 10. Y.Wang, S.Kanwal, M.Liaqat, A.Aslam and U.Bashir, On second Gourava invariant for q-apex trees, *Journal of Chemistry*, 2022, Article ID 7513770, 7 pages.
- 11. I. Gutman, Geometric approach to degree-based topological indices: Sombor indices. *MATCH Commun. Math. Comput. Chem,* 86(1), (2021) 11-16.
- 12. S.Alikhani and N.Ghanbari, Sombor index of polymers, *MATCH Commun. Math. Comput. Chem.* 86 (2021).
- 13. R.Cruz, I.Gutman and J.Rada, Sombor index of chemical graphs, *Appl. Math. Comput.* 399 (2021) 126018.
- 14. H.Deng, Z.Tang and R.Wu, Molecular trees with extremal values of Sombor indices, *Int. J. Quantum Chem*.DOI: 10.1002/qua.26622.
- 15. I.Gutman, V.R.Kulli and I.Redzepovic, Sombor index of Kragujevac trees, *Ser. A: Appl. Math. Inform. And Mech.* 13(2) (2021) 61-70.
- 16. I.Gutman, I.Redzepovic and V.R.Kulli, *KG*-Sombor index of Kragujevac trees, *Open Journal of Discrete Applied Mathematics*, 5(2) (2022) 19-25.
- 17. B.Horoldagva and C.Xu, On Sombor index of graphs, *MATCH Commun. Math. Comput. Chem.* 86 (2021).
- 18. V.R.Kulli, Sombor indices of two families of dendrimer nanostars, *Annals of Pure and Applied Mathematics*, 24(1) (2021) 21-26.
- 19. V.R.Kulli, Different versions of Sombor index of some chemical structures, *International Journal of Engineering Sciences and Research Technology*, 10(7) (2021) 23-32.
- 20. V.R.Kulli, New irregularity Sombor indices and new Adriatic (*a, b*)-KA indices of certain chemical drugs, *International Journal of Mathematics Trends and Technology*, 67(9) (2021) 105-113.
- 21. V.R.Kulli,  $\delta$ -Sombor index and its exponential for certain nanotubes, *Annals of Pure and Applied Mathematics*, 23(1) (2021) 37-42.
- 22. V.R.Kulli and I.Gutman, Revan Sombor index, *Journal of Mathematics and Informatics*, 22 (2022) 23-27.
- 23. V.R.Kulli, Neighborhood Sombor index of some nanostructures, *International Journal of Mathematics Trends and Technology*, 67(5) (2021) 101-108.
- 24. V,R,Kulli, N.Harish, B.Chaluvaraju and I.Gutman, Mathematical properties of KG-Sombor index, *Bulletin of the International Mathematical Virtual Institute*, 12(2) (2022) 379-386.
- 25. V,R,Kulli, N.Harish, and B.Chaluvaraju, Sombor leap indices of some chemical drugs, *RESEARCH REVIEW International Journal of Multidisciplinary*, 7(10) (2022) 158-166.
- 26. V.R.Kulli and I.Gutman, Sombor and KG Sombor indices of benzenoid systems and phenylenes, Annals of Pure and Applied Mathematics, 26(2) (2022) 49-53.
- 27. N.N.Swamy, T.Manohar, B.Sooryanarayana and I.Gutman, Reverse Sombor index, *Bulletin of the International Mathematical Virtual Institute*, 12(2) (2022) 267-272.

http://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[38]

